

What is EMBRACE?

EMBRACE is a pioneering embryonic cell-free DNA test developed by Igenomix that allows your clinic to identify the embryos that are the most likely to be chromosomally normal without a biopsy.

This information helps patients and physicians decide which embryo to prioritize and transfer first in an IVF cycle, maximizing the chance of a healthy pregnancy.

Test Results

Embryos most likely to be chromosomally normal will be given the highest score and prioritized for transfer.

How does it work?

Embryos stay safely in the IVF clinic

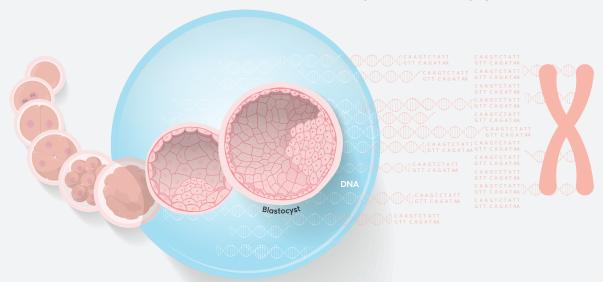
Who is it for?

EMBRACE is for patients undergoing IVF who wish to transfer embryos most likely to be chromosomally normal.

Patients requiring PGT-M or PGT-SR should pursue testing based on trophectoderm biopsy.

EMBRACE IS BASED ON THE FOLLOWING DATA:

A multicenter prospective study on the concordance between embryonic cell-free DNA and trophectoderm biopsies from 1,301 human blastocysts


The recent identification of embryonic cell-free DNA in the spent blastocyst media has opened a new era of possibilities for embryonic aneuploidy testing in assisted reproductive technologies.

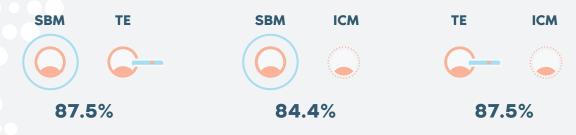
1

During development, embryonic cell-free DNA is released into the culture medium with increasing concentration as the number of cells multiplies from day 4 to day 6.

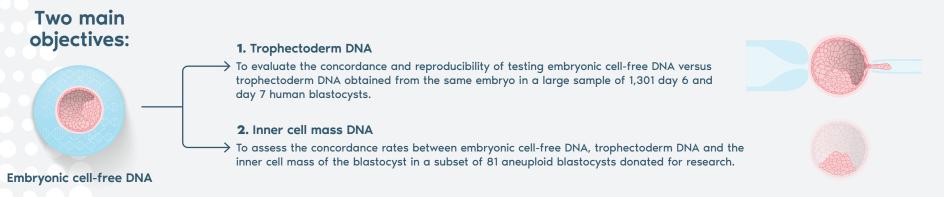
2

The spent culture medium containing embryonic cell-free DNA is analyzed by next generation sequencing (NGS). The chromosome copy number of the blastocyst is assessed without the need for trophectoderm biopsy.

3


Igenomix has carried out a study in eight IVF centers comparing the results obtained in embryonic cell-free DNA from 1,301 spent blastocyst media and the corresponding trophectoderm biopsies in couples undergoing preimplantation genetic testing for aneuploidy (PGT-A).

In a subgroup of 81 blastocysts, the comparison of the inner cell mass with the embryonic cell-free DNA and the trophectoderm biopsies has shown similar concordance rates, 84.4% and 87.5% respectively.


The concordance rate was on average 78.2% ranging from 72.5% to 86.3% in different centers, without significant differences related to culture conditions or blastocyst quality.

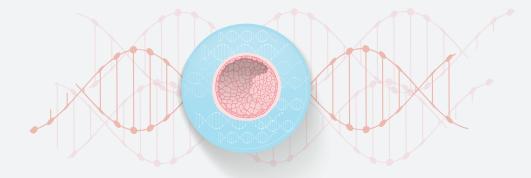
100%

0%

— 78.2%

86.3%

v1.2020



4

High concordance rates when comparing 1,301 embryonic cell-free DNA and trophectoderm DNA samples

The results of embryonic cell-free DNA from spent blastocyst media demonstrated a high concordance rate with the trophectoderm biopsy results.

	Center 1	Center 2	Center 3	Center 4	Center 5	Center 6	Center 7	Center 8	TOTAL
Concordance	75.6	77.1	81.8	86.3	84.2	85.0	72.5	77.0	78.2
Sensitivity	80.5	84.8	88.2	86.7	91.3	76.7	76.5	78.9	81.7
Specificity	69.9	72.7	85.2	87.5	80.0	93.3	64.7	78.1	77.4

We conclude that this non-invasive approach could avoid embryo biopsy, while making it accessible to a wider population of patients. More studies are needed to understand the precise source of the embryonic cell-free DNA and the mechanisms involved.

www.igenomix.ca

+1 (514) 669-3869

infocanada@igenomix.com